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The emergence of zoonotic viral diseases in humans commonly

reflects exposure to mammalian wildlife. Bats (order

Chiroptera) are arguably the most important mammalian

reservoir for zoonotic viruses, with notable examples including

Severe Acute Respiratory Syndrome coronaviruses 1 and 2,

Middle East Respiratory Syndrome coronavirus, henipaviruses

and lyssaviruses. Herein, we outline our current knowledge on

the diversity of bat viromes, particularly through the lens of

metagenomic next-generation sequencing and in the context

of disease emergence. A key conclusion is that although bats

harbour abundant virus diversity, the vast majority of bat

viruses have not emerged to cause disease in new hosts such

that bats are better regarded as critical but endangered

components of global ecosystems.
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Introduction
The global COVID-19 pandemic caused by Severe Acute

Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has

intensified interest in bats as reservoirs for emerging

viruses. Bats are the largest mammalian order (Chirop-

tera) after rodents, comprising over 1400 species from two

suborders: the Yinpterochiroptera containing the Ptero-
podidae (‘fruit bats’) and five families of microbat, and the

Yangochiroptera containing the remaining 14 microbat

families [1�]. The most widespread bat families include

the Hipposideridae, Pteropodidae, Rhinolophidae, Molossi-
dae, Emballonuridae, Phyllostomidae and Vespertilionidae
that contain up to �190 species, while the Craseonycteridae
and Myzopodidae harbour only one or two species and are

geographically restricted [2,3]. For dietary purposes bats

can be classified as insectivores, frugivores, carnivores and
www.sciencedirect.com 
nectivores, and several species use echolocation to char-

acterise their surrounding environment and locate prey.

Bats are found in every continent excluding Antarctica, in

part reflecting their capacity to migrate via flight, with

roosting sites that vary seasonally.

Virome diversity in bats
Metagenomic sequencing is an increasingly powerful and

popular tool for virus discovery, particularly as it allows

the characterisation of viruses from families that are often

overlooked in PCR-based screening that focuses on

known or likely pathogens. It is therefore no surprise

that much of our knowledge of bat viromes comes from

the deployment of large-scale metagenomic next-gener-

ation sequencing (mNGS), particularly total RNA

sequencing (metatranscriptomics). At the time of writing,

�30% of all the bat associated virus sequences deposited

on NCBI/GenBank have been identified by mNGS only,

an increase from 10% in 2016 (Figure 1). The recent

identification of Wittenau bat nairovirus (Nairoviridae)
and Ruhugu virus (Matonaviridae) serve as informative

examples [4,5], as was the detection of deltaviruses (Kol-
mioviridae) in bats, even though these viruses were origi-

nally only associated with humans in the context of co-

infection with hepatitis B virus [6�].

The collection of bat urine, saliva and faecal samples is

commonly used in mNGS studies as this minimises the

impact on bat populations. In many cases it also repre-

sents the likely route of virus transmission, although it

may miss viruses associated with specific tissues. The

analyses of faecal material and urine from bat species

sampled on multiple continents have identified viruses

from the Adenoviridae, Astroviridae, Caliciviridae, Corona-
viridae, Flaviviridae, Papillomaviridae, Paramyxoviridae,
Parvoviridae, Picornaviridae, Polyomaviridae and Reoviri-
dae [7,8�,9–11]. For example, a study of more than

4000 bat rectal and pharyngeal swabs from three common

bat genera – horseshoe bats (Rhinolophus), mouse-eared

bats (Myotis) and bent winged bats (Miniopterus) – in

China identified novel virus sequences from diverse viral

families, including the Coronaviridae and Paramyxoviridae
(see below), as well as those from the order Bunyavirales of

RNA viruses [12��]. The Bunyavirales currently comprises

12 families including a number associated with human

disease. Five of these families have been identified in

bats: the Arenaviridae, Nairoviridae, Hantaviridae, Peribu-
nyaviridae and Phenuiviridae [5,8�,13,14]. However, it is

also important to note that rather than infecting bat

themselves, many of the viruses detected in bats may

be associated with aspects of the bat diet and microbiome.

This is especially the case in studies utilising faecal
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Figure 1
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Taxonomic distribution of publicly available gene sequences of bat viruses. Plots show virus sequences on NCBI/GenBank in which the order

Chiroptera or individual bat species are listed as hosts. (a) Percentage of bat virus sequences that belong to RNA virus families and (b) RNA virus

sequences by year of NCBI release. (c) Percentage of bat virus sequences that belong to DNA virus families and (D) DNA virus sequences by year

of NCBI release.
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mNGS studies [8�,9,15–17], and care should also be taken

to exclude reagent contamination [18].

A broad-scale conclusion from metagenomic studies is

that bats may be particularly prone to carrying viral

families that are commonly associated with zoonotic

disease. Of the more than 16 600 bat associated viral

sequences on NCBI/GenBank, 85% are RNA viruses,

including 30% and 24% from the families Coronaviridae
and Rhabdoviridae, respectively, while 10% of all bat-

associated viral sequences identified to date are from

the Paramyxoviridae (Figure 1). Interestingly, those virus

families that might pose a greater zoonotic risk (i.e. the

Coronaviridae, Paramyxoviridae and Rhabdoviridae; see

below) are generally associated with a narrower range

of bat families compared to those viruses that may be less

likely to emerge in humans (i.e. Astroviridae, Reoviridae
and Picornaviridae) (Figure 2). As a case in point, a range

of SARS-CoV-2 related coronaviruses have been charac-

terised through mNGS of bats sampled in China and parts

of south-east Asia [19��,20,21]. The viruses carried by bats

also vary markedly by bat family (Figure 2). As expected,

the widespread and species rich bat families (i.e. the

Vespertilionidae, Rhinolophidae, Pteropodidae, Phyllostomidae
and Hipposideridae) harbour a greater diversity of viruses

than the less speciose families (Noctilionidae, Natalidae,
Myzopodidae and Furipteridae).

Notable zoonotic outbreaks associated with
bats
Coronaviridae

The current interest in bats as reservoirs for emerging

viruses began with the outbreak of SARS-CoV-1 in 2002/

2003 [22], and there has recently been intense research

activity in documenting the diversity of alphacoron-

viruses and betacoronaviruses (Figure 3).

Initial studies showed that civets (Paguma larvata) were

the likely source of SARS-CoV-1, with emergence in

humans associated with their presence in live animal

markets in southern China [23]. However, the subsequent

sampling of bats in China provided serological evidence

of infection with SARS-like coronaviruses in bats of the

genus Rhinolophus (i.e. horseshoe bats) in Hubei and

Guangxi provinces, confirmed by PCR of faecal samples

[24��]. Bats of the genus Rhinolophus are therefore the

likely reservoir hosts for SARS-CoV-1, with onward trans-

mission to civets and (perhaps raccoon dogs) that acted as

‘intermediate’ hosts to seed human infection [24��]. The

presence of SARS-like coronaviruses with high sequence

similarity to SARS-CoV-1 were later identified in Chinese

horseshoe bats (Rhinolophus sinicus) [12��,25]. Notably, a

study from multiple locations in China detected the

conserved RNA-dependent RNA polymerase (RdRp)

domain of coronaviruses in 6.5% of bat species from

the genera Rhinolophus, Pipistrellus, Scotophilus, Myotis,
Tylonycteris and Miniopterus, with phylogenetic analysis
www.sciencedirect.com 
showing that three of the coronaviruses detected, all from

the genus Rhinolophus, clustered with SARS-like corona-

viruses [26].

In 2012 Middle Eastern Respiratory Syndrome coronavi-

rus (MERS-CoV) appeared in Saudi Arabia, resulting in

respiratory illness and relatively high levels of mortality

[27]. Studies of Dromedary camels identified multiple

MERS-CoV-like lineages (as well as the alphacoronavirus

HCoV-229E) reflecting several decades of circulation in

these animals with multiple transmission events to

humans and widespread recombination [28]. Notably,

MERS-like CoVs were also identified in multiple bat

species (Pipistrellus cf. hesperdus, Nycteris cf. gambiensis,
Pipistrellus nathusii, Pipistrellus pipistrellus, Pipistrellus pyg-
maeus and Neoromica cf. zuluensis) [29–31]. Hence, these

bat viruses likely represent the reservoir wildlife hosts for

the viruses that later emerged, via camels, as MERS-CoV.

However, the bat coronaviruses most closely related to

MERS-CoV also differed markedly in the spike protein

and had reduced capacity to bind to the human dipeptidyl

peptidase 4 cell receptor used by MERS-CoV [29,32�].

SARS-CoV-2 was first reported to cause severe pneumo-

nia in humans in Wuhan, China in late 2019 [33�]. Meta-

genomic surveys and associated phylogenetic analyses

have identified viruses closely related to SARS-CoV-2

in Rhinolophus bat species from several Asian countries

(China, Cambodia, Thailand, Japan and Laos)

[19��,20,21,34,35�,36]. For example, five SARS-CoV-2

related coronaviruses were detected in pooled faecal

samples collected from bats (Rhinolophus pusillus, Rhino-
lophus stheno and Rhinolophus malayanus) in two studies of

a single tropical botanical garden in Yunnan province,

China [19��,20]. Close relatives of the alphacoronavirus

porcine epidemic disease virus were identified at the

same sampling site [19��]. Of most note, five SARS-

CoV-2 related coronaviruses were recently identified in

three Rhinolophus species in Laos (R. malayanus, R. pusil-
lus and Rhinolophus marshalli), three of which grouped

closely with human SARS-CoV-2 on phylogenetic trees

and possessed a receptor binding domain with high

sequence similarity to that of SARS-CoV-2 and the ability

to bind to the human ACE2 receptor [21]. This provides

strong evidence that viruses with the capacity to infect

humans exist in wildlife species and hence represent a

pandemic risk. Genomic recombination has also been

commonplace among viruses of the SARS-CoV-2-like

lineage (i.e. the sarbecoviruses) [19��,21,34,37], greatly

complicating attempts to accurately reconstruct evolu-

tionary history and suggesting that mixed infection is

commonplace in bats and perhaps other mammalian

species.

Although most of the focus has necessarily been on

human disease, coronaviruses of bat ancestry have

resulted in disease outbreaks in species other than
Current Opinion in Virology 2022, 52:1–11
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Figure 2
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Number of publicly available virus gene sequences for each family of bats. The heat map shows (a) the number of RNA viruses and (b) the

number of DNA viruses separated by virus family, and the corresponding bat host family as given on NCBI. Virus sequences with an unspecified

bat host (i.e. host listed as Chiroptera) are represented as ‘unclassified Chiroptera’.
humans. For example, a novel alphacoronavirus – Swine

Acute Diarrhoea Syndrome coronavirus (SADS-CoV) –

caused the death of upwards of 24 000 pigs in China in

2016 [38]. SADS-related coronaviruses were detected in

rectal swabs from horseshoe bats in Guangdong province

from 2013 to 2016 [38].
Current Opinion in Virology 2022, 52:1–11 
Paramyxoviridae

Interest in bat paramyxoviruses began with the discovery

of Hendra, Nipah and Menangle viruses (see below).

Since then, a large number of bat paramyxoviruses have

been characterised, exhibiting considerable phylogenetic

diversity (Figure 4). For example, 14 novel bat
www.sciencedirect.com
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Figure 3

Alphacoronavirus
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Representative phylogenetic diversity of bat coronaviruses. An amino acid alignment of the RdRp of the Coronaviridae was used to infer a

maximum likelihood phylogeny using IQ-TREE [81]. The phylogeny was estimated using viruses from the four coronavirus genera as marked by

coloured lines to the right of the phylogeny. The tree was mid-point rooted and bootstrap values are represented by coloured circles. Bat viruses

are shown in red font and fall into the Alphacoronavirus and Betacoronavirus genera. Animal silhouettes representing host species are displayed

next to viruses that do not list a host species in the virus name.
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Figure 4
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Representative phylogenetic diversity of bat paramyxoviruses. An amino acid alignment of the L protein that contains the RdRp of the

Paramyxoviridae was used to infer a maximum likelihood tree using IQ-TREE [81]. The tree was mid-point rooted and bootstrap values are

represented by coloured circles. Bat viruses are shown in red font. Animal silhouettes representing animal host species are displayed next to

viruses that do not provide a host species in the virus name. The avian paramyxovirus clade has been collapsed to enhance visualisation.
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paramyxoviruses were discovered in nine species of bats

in a single mNGS study from China [12��], while in 2020 a

novel bat paramyxovirus – Achimota Pararubulavirus 3 –

was identified in a urine sample from Eidolon helvum [39].

Hendra virus (genus Henipavirus, family Paramyxoviridae)
was first reported to cause acute respiratory illness in

horses and encephalitis in humans in Queensland,

Australia in 1994, initially resulting in the death of

16 horses and two humans who had contact with sick

horses [40–43]. After 2000 horses tested serologically

negative to the virus it was proposed that it likely origi-

nated from a wildlife source [44,45], and the black flying

fox (Pteropus alecto), grey headed flying fox (Pteropus
poliocephalus), spectacled flying fox (Pteropus conspicilla-
tus) and little red flying fox (Pteropus scapulatus) were later

identified as carrying neutralising antibodies to the virus

[45]. Hendra virus was later confirmed in the birthing

fluid and foetal tissue from a grey headed flying fox and

the foetal tissue from a black flying fox, as well as a high

prevalence in bat urine [46,47]. Urine may therefore

represent the likely mode of transmission to horses, with

subsequent transmission through respiratory secretions to

horses and humans [45–47].

Another member of the genus Henipavirus – Nipah virus –

has similarly made the jump from bats to domestic

animals. This virus was first reported in farmed pig

populations in Malaysia in late 1998 before emerging

in Singapore in early 1999 and again in India and

Bangladesh in 2001, causing neurological and respiratory

illness in pigs and encephalitis in humans [48,49]. During

the 1998 Malaysia outbreak 238 humans contracted the

virus, 105 of whom died [50]. Following the identification

of Hendra virus in flying foxes (genus Pteropus), the large

flying fox (Pteropus vampyrus), small flying fox (Pteropus
hypomelanus), cave nectar bat (Eonycteris spelaea), lesser

short-nosed fruit bat (Cynopterus brachyotis) and lesser

Asiatic yellow bat (Scotophilus kuhlii) were identified as

carrying neutralising antibodies to the virus [51]. The

Indian flying fox (Pteropus medius, previously Pteropus
giganteus) has similarly been linked to the Nipah virus

outbreaks in India and Bangladesh [52,53].

The third zoonotic virus of the family Paramyxoviridae
carried by bats is Menangle virus (genus Pararubulavirus).
Menangle virus successfully established infection in a

farmed pig population in 1997, presenting as reproductive

complications [54]. Two humans working at separate

piggeries recorded severe influenza-like symptoms dur-

ing the 1997 piggery outbreak and were seropositive for

Menangle virus [55]. Both workers confirmed they had

been exposed to fluids from pigs housed at the outbreak

farm [55]. Like Hendra, the grey headed flying fox, black

flying fox and spectacled flying fox were later identified as

carrying neutralising antibodies for Menangle virus and

hence likely act as reservoir hosts [54,56], although no
www.sciencedirect.com 
Menangle virus outbreaks have been recorded in

Australia since 1997.

Rhabdoviridae

The Rhabdoviridae are a diverse set of negative-sense

RNA viruses comprising multiple genera, one of which,

the genus Lyssavirus, can cause rabies in mammals (the

ecology and evolution of which has been extensively

reviewed elsewhere [57]). Bats are the likely reservoir

hosts for most lyssaviruses, although classic rabies lyssa-

virus is mainly transmitted to humans through bites or

scratches from carnivores like dogs and racoons. Lyssa-

viruses currently include 17 characterised species that

have been detected in bat species in a range of geographic

locations, including Australian bat lyssavirus [58], Irkut

lyssavirus (Russia) [59], Bokelon bat lyssavirus (Germany)

[60], European bat lyssavirus 1 and 2 [61], Aravan and

Khujand virus (Asia) [62] and Gannoruwa bat lyssavirus

(Sri Lanka) [63]. Unfortunately, a lack of sampling makes

it difficult to determine whether these viruses are present

in other mammalian species.

For most bat species interactions with humans and other

animals are limited to occasional occurrences such as

through animal carers and in backyards and households.

Accordingly, there is only sporadic lyssavirus transmission

from bats to humans, although outcomes are often fatal.

In contrast, the common vampire bat (Desmodus rotundus),
hairy-legged vampire bat (Diphylla ecaudata) and white-

winged vampire bat (Diaemus youngi) from South and

Central America have a unique blood-feeding diet that

provides an opportunistic route of the transmission for

classic rabies lyssavirus into livestock [64].

Why are bats good reservoir hosts?
Bats undoubtedly harbour a large and diverse array of

viruses, some of which have jumped species boundaries

to emerge in new hosts and occasionally cause disease

outbreaks. The question that naturally arises is why bats

are seemingly such important reservoir hosts for zoonotic

viruses, particularly as some studies indicate that the

number of viruses carried by bats is significantly greater

than other mammalian orders [65�]. The social dynamics

of bat populations, including very large roosting numbers

and species co-habitation, provide the perfect setting for

viral transmission, while the capacity of bats to travel to

different or new geographical regions provides a mecha-

nism for viruses to become established in naı̈ve bat

populations. It is also likely that the characteristic

flight-adapted physiology of bats in part provides an

explanation for their high virus burden [66��,67], while

the unique anti-inflammatory and proinflammatory

responses in bats, as well as distinctive immunological

traits such as the reduced number of interferon genes

(such as in the black flying fox) and that the interferon

genes are continually expressed in the absence of an

initiated immune response, may in part explain why bats
Current Opinion in Virology 2022, 52:1–11
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are often asymptomatic carriers for a myriad of viruses

[66��,67,68,69��]. More detailed studies of the innate and

adaptive immune responses in a broader range of Yinp-

terochiroptera and Yangochiroptera should clearly be a

research priority.

Despite the mounting evidence that bats harbour a par-

ticularly large and abundant virome, it is important to

acknowledge that the increasing frequency with which

bat viruses are described is also impacted by major

ascertainment and confirmation biases. Indeed, following

the discovery of the bat reservoir for SARS-CoV-1 there

has been a marked increase in studies of bat viromes, with

an emphasis on sampling from bat populations in China

and other Asian countries [12��,19��,70,71�,72], and of

particular genera such as Rhinolophus, although the popu-

lation density of these animals varies markedly in space

[19��]. Obviously, the more a particular group of animals is

sampled then, on average, the more novel viruses will be

characterised, and some studies have suggested that bats

carry no more virus than expected given their species

richness [73]. Perhaps more importantly, although virus

species richness in bats is high, these viruses rarely

establish successful human infection and most bat viruses

classed as zoonotic are not directly transmitted from bats

to humans. Rather, bat-to-human transmission routinely

involves an intermediate animal host (such as pigs, camels

and horses), and a number of the viral families that appear

regularly in bat virome studies have not yet spilled over

into human populations (Figure 2). Indeed, the zoonotic

risk posed by bat viruses needs to be qualified by the

observation that many of these viruses have been associ-

ated with bats for millennia with only a small number of

spill-over events. For example, the common ancestor of

the sarbecoviruses has been estimated to have existed

�21 000 years ago [74�], while the origin of the orthocor-

onaviruses has been dated to over 150 million years ago

[75].

Challenges in bat viromics
The increasing use of mNGS has identified a multitude of

novel and highly diverse RNA and DNA viruses in bats,

greatly expanding our knowledge of the known viro-

sphere and providing important information on the ori-

gins of specific viruses. The advantages of mNGS are

manifold, including its unbiased and multiplex approach,

easy application, high sensitivity and continually decreas-

ing cost. However, the computational challenges of ana-

lysing the abundant sequence data produced by mNGS

can be considerable, particularly in resource poor settings,

and accurately identifying viruses that infect bats as

opposed to components of their diet or microbiome can

be challenging [76]. In particular, bats consume insects

and are also susceptible to arthropod parasites, both of

which may commonly carry viruses [77,78], and both

insect viruses and bacteriophages are commonly detected

in bat metagenomic data [5,8�,16,17]. Hence, to fully
Current Opinion in Virology 2022, 52:1–11 
exploit the growing information obtained by mNGS

studies of bat viromes new bioinformatics tools need to

be developed that can rapidly and accurate identify those

viruses most likely to infect bats. Similarly, determining

which of the myriad of bat viruses are of likely human

pandemic potential may not be possible though compu-

tational analyses alone. For example, although closely

related to SARS-CoV-2, Rhinolophus affinis virus RaTG13

is unable to bind to the human ACE2 receptor [79].

Conclusions – an uncertain future for bats
Bats play a central role in maintaining a sustainable

ecosystem, helping to pollinate, distribute seeds and

control pests for thousands of plant species [80]. Since

the identification of bats as reservoir hosts for many

zoonotic viruses this group of animals has acquired an

unjustified negative reputation, especially those species

that roost in urban habitats, leading to an unsympathetic

mindset among many communities. Climate change,

urbanisation and industrial and agricultural advance-

ments have greatly impacted bat populations globally

[80], while encroachment onto bat habitats through

urbanisation has increased the chance of viral spillover

events into humans or companion and production ani-

mals. Currently, 106 bat species are listed as endangered

or critically endangered on the IUCN (International

Union for Conservation of Nature) red list, with 110 spe-

cies threatened. Irrespective of any potential zoonotic

risk, efforts to increase bat numbers should be prioritised.

It is essential that we conserve this diverse group of

animals, not only for the benefits to our ecosystem but

also to enhance our understanding of viral biodiversity

and evolution, as well as mammalian immunology.
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